
Ptrack 2.0: yet another block-level 
incremental backup engine

Alexey Kondratov
Postgres Professional

PGCon’20, May 27-28



Outline
o Motivation: incremental backups
o How Postgres works with data?
o Ptrack 1.0 recap
o Ptrack 2.0 overview

• In-memory	data	structure	and	operations	
• Durability

o Limitations
o Public SQL API and configuration
o Benchmarks

2



Incremental backup

o Only 50% out of our 10 GB database has changed since the last backup.

o Copy only those 5 GB during incremental backup instead of full 10 GB.

o Spend twice as less disk space and time.

o Profit!

3



Incremental backup strategies

o PAGE*: scan all WAL files in the archive from the moment of the 
previous full or incremental backup. Newly created backup contains only 
those pages that were mentioned in WAL records.

o DELTA*: read all data files in PGDATA directory, compare LSNs and 
copy only those pages, that where changed since previous backup.

*	pg_probackup	terminology
4

https://github.com/postgrespro/pg_probackup


Incremental backup strategies

o PAGE*: scan all WAL files in the archive from the moment of the 
previous full or incremental backup. Newly created backup contains only 
those pages that were mentioned in WAL records.

o DELTA*: read all data files in PGDATA directory, compare LSNs and 
copy only those pages, that where changed since previous backup.

o PTRACK: PostgreSQL tracks page changes on the fly, so we receive a 
ready to execute map of modified blocks.

5
*	pg_probackup	terminology

https://github.com/postgrespro/pg_probackup


How Postgres works with data?

6



How Postgres works with data?

Code example: heapam.c > heap_insert()

7

https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/access/heap/heapam.c#L1831


Ptrack 1.0 recap

o Use the same Buffer/Storage Manager machinery from PostgreSQL for 
Ptrack data pages.

o Add another relation fork *_ptrack in addition to *_fsm / *_vm.

o Track page modification in each place, when it is done.

o Read and reset Ptrack map after pg_start_backup().

8



Ptrack 1.0 recap

Catch page 
modification here

9



Ptrack 1.0 recap

Code example: heapam.c > heap_insert()

We must track page 
modification before 
critical section

10

https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/access/heap/heapam.c#L1831


250+ 
places to track page 

modification!

11



250+ 
places to track page 

modification!

250

12



Ptrack 1.0 drawbacks

o Cannot mark blocks in a single place like MarkBufferDirty(), since it is called 
inside critical section.

o Too many places to put tracking routine call, too easy to miss some of them.

o Fused into PostgreSQL core.

o One extra file per relation.

o Additional workarounds to prevent data loss during Ptrack map reset.

13



Ptrack 2.0: can we do better?

14



Ptrack 2.0 overview

Let’s track page, 
when it actually 

hits disk

15



Ptrack 2.0 overview

o Postgres mostly modifies everything via Buffer manager, so we can catch 
these operations at the very bottom level, when the affected pages are 
evicted back to disk.

o Pages on replica and during redo process follow the same path, so there is 
no additional work to do.

o However, there are certain operations where Postgres simply copies the 
entire directory with all its content: CREATE DATABASE, ALTER 
DATABASE … SET TABLESPACE.

16



Ptrack 2.0 hooks

Ptrack core patch adds following hooks:

o smgrwrite() / mdwrite() hook

o smgrextend() / mdextend() hook

o copydir() hook

o Checkpoint (ProcessSyncRequests) hook

Only four places instead of 250 = win!
17

https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L670
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L387
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L387
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/file/copydir.c#L37
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/file/copydir.c#L37
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/sync/sync.c#L236


Ptrack 2.0 structure

o Use a single cluster-
wide map of a fixed 
size for modified page 
LSNs tracking.

o Load it in memory from 
the file using mmap().

18

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html


Ptrack 2.0 structure

19

Map database Oid, tablespace Oid, relation 
Oid, fork number, and block number into a 
cell in the Entries LSN array.



Ptrack 2.0 operations

Put new LSN value into the map 
using atomic operation. 

20



Ptrack 2.0 durability

Durably flush Ptrack map to disk during checkpoint:

1. Keep ptrack.map file since last checkpoint intact.

2. Read Ptrack map records atomically one by one into the local buffer.

3. Write buffer content into a transient file ptrack.map.tmp.

4. Calculate CRC checksum and write it at the end of file.

5. Durably replace ptrack.map with newly created ptrack.map.tmp.

21



Ptrack 2.0 limitations

o Due to the fixed size of Ptrack map there are may be false positives, but 
never false negatives. However, with 64 MB of map you can track per-
block changes in a 64 GB database without false positives.

o You can only use Ptrack safely with wal_level >= 'replica', since certain 
commands are designed not to write WAL at all if wal_level is minimal.

o Currently, you cannot resize Ptrack map in runtime, only on postmaster 
start.

22

https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR
https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR
https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR


Ptrack 2.0 public SQL API

o ptrack_version() — returns Ptrack version string.

o ptrack_init_lsn() — returns LSN of the Ptrack map initialization.

o ptrack_get_pagemapset('LSN') — returns a set of changed data files 

with bytea bitmaps of changed blocks since specified LSN.

23



24

Ptrack 2.0 configuration

o The only one configurable option is ptrack.map_size (in MB).

o To completely avoid false positives it is recommended to 
set ptrack.map_size to 1 / 1000 of expected PGDATA size.

o To disable Ptrack and clean up all remaining service files 
set ptrack.map_size to 0.



25

Ptrack 2.0 usage



Ptrack 2.0 benchmarks

ptrack.map_size, MB REL_12_STABLE 32 64 256 512 1024

TPS 16900 16890 16855 16468 16490 16220

o tmpfs partition, ~1 GB database (pgbench scale = 133), all defaults.

o No pgbench_tellers and pgbench_branches updates to lower lock 
contention.

o pgbench -s133 -c40 -j1 -n -P15 -T300 -f pgb.sql

26

https://github.com/postgrespro/ptrack/blob/d38aa2ad816e8a9360fd09a05eb85d6db67ae289/benchmarks/pgb.sql


Open source

Ptrack and pg_probackup are 
available on GitHub:
o github.com/postgrespro/ptrack

o github.com/postgrespro/pg_probackup

 

27

https://github.com/postgrespro/ptrack
https://github.com/postgrespro/pg_probackup


28

Feedback

If you have any questions or comments:
o kondratov.aleksey@gmail.com

o github.com/ololobus

o twitter.com/ololobuss

Thank you!

mailto:kondratov.aleksey@gmail.com
https://github.com/ololobus
https://twitter.com/ololobuss

