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Incremental backup

o Only 50% out of our 10 GB database has changed since the last backup.

o Copy only those 5 GB during incremental backup instead of full 10 GB.

o Spend twice as less disk space and time.

o Profit!
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Incremental backup strategies

o PAGE*: scan all WAL files in the archive from the moment of the 
previous full or incremental backup. Newly created backup contains only 
those pages that were mentioned in WAL records.

o DELTA*: read all data files in PGDATA directory, compare LSNs and 
copy only those pages, that where changed since previous backup.

*	pg_probackup	terminology
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https://github.com/postgrespro/pg_probackup


Incremental backup strategies

o PAGE*: scan all WAL files in the archive from the moment of the 
previous full or incremental backup. Newly created backup contains only 
those pages that were mentioned in WAL records.

o DELTA*: read all data files in PGDATA directory, compare LSNs and 
copy only those pages, that where changed since previous backup.

o PTRACK: PostgreSQL tracks page changes on the fly, so we receive a 
ready to execute map of modified blocks.
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https://github.com/postgrespro/pg_probackup


How Postgres works with data?
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How Postgres works with data?

Code example: heapam.c > heap_insert()
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https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/access/heap/heapam.c#L1831


Ptrack 1.0 recap

o Use the same Buffer/Storage Manager machinery from PostgreSQL for 
Ptrack data pages.

o Add another relation fork *_ptrack in addition to *_fsm / *_vm.

o Track page modification in each place, when it is done.

o Read and reset Ptrack map after pg_start_backup().
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Ptrack 1.0 recap

Catch page 
modification here
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Ptrack 1.0 recap

Code example: heapam.c > heap_insert()

We must track page 
modification before 
critical section
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https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/access/heap/heapam.c#L1831


250+ 
places to track page 

modification!
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250+ 
places to track page 

modification!

250
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Ptrack 1.0 drawbacks

o Cannot mark blocks in a single place like MarkBufferDirty(), since it is called 
inside critical section.

o Too many places to put tracking routine call, too easy to miss some of them.

o Fused into PostgreSQL core.

o One extra file per relation.

o Additional workarounds to prevent data loss during Ptrack map reset.
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Ptrack 2.0: can we do better?
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Ptrack 2.0 overview

Let’s track page, 
when it actually 

hits disk
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Ptrack 2.0 overview

o Postgres mostly modifies everything via Buffer manager, so we can catch 
these operations at the very bottom level, when the affected pages are 
evicted back to disk.

o Pages on replica and during redo process follow the same path, so there is 
no additional work to do.

o However, there are certain operations where Postgres simply copies the 
entire directory with all its content: CREATE DATABASE, ALTER 
DATABASE … SET TABLESPACE.
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Ptrack 2.0 hooks

Ptrack core patch adds following hooks:

o smgrwrite() / mdwrite() hook

o smgrextend() / mdextend() hook

o copydir() hook

o Checkpoint (ProcessSyncRequests) hook

Only four places instead of 250 = win!
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https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L670
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L387
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/smgr/md.c#L387
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/file/copydir.c#L37
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/file/copydir.c#L37
https://github.com/postgres/postgres/blob/e936fcb54d22561ad49c6c18f91dcb7566a58da1/src/backend/storage/sync/sync.c#L236


Ptrack 2.0 structure

o Use a single cluster-
wide map of a fixed 
size for modified page 
LSNs tracking.

o Load it in memory from 
the file using mmap().
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https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html


Ptrack 2.0 structure
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Map database Oid, tablespace Oid, relation 
Oid, fork number, and block number into a 
cell in the Entries LSN array.



Ptrack 2.0 operations

Put new LSN value into the map 
using atomic operation. 
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Ptrack 2.0 durability

Durably flush Ptrack map to disk during checkpoint:

1. Keep ptrack.map file since last checkpoint intact.

2. Read Ptrack map records atomically one by one into the local buffer.

3. Write buffer content into a transient file ptrack.map.tmp.

4. Calculate CRC checksum and write it at the end of file.

5. Durably replace ptrack.map with newly created ptrack.map.tmp.
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Ptrack 2.0 limitations

o Due to the fixed size of Ptrack map there are may be false positives, but 
never false negatives. However, with 64 MB of map you can track per-
block changes in a 64 GB database without false positives.

o You can only use Ptrack safely with wal_level >= 'replica', since certain 
commands are designed not to write WAL at all if wal_level is minimal.

o Currently, you cannot resize Ptrack map in runtime, only on postmaster 
start.
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https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR
https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR
https://www.postgresql.org/docs/12/populate.html#POPULATE-PITR


Ptrack 2.0 public SQL API

o ptrack_version() — returns Ptrack version string.

o ptrack_init_lsn() — returns LSN of the Ptrack map initialization.

o ptrack_get_pagemapset('LSN') — returns a set of changed data files 

with bytea bitmaps of changed blocks since specified LSN.
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Ptrack 2.0 configuration

o The only one configurable option is ptrack.map_size (in MB).

o To completely avoid false positives it is recommended to 
set ptrack.map_size to 1 / 1000 of expected PGDATA size.

o To disable Ptrack and clean up all remaining service files 
set ptrack.map_size to 0.
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Ptrack 2.0 usage



Ptrack 2.0 benchmarks

ptrack.map_size, MB REL_12_STABLE 32 64 256 512 1024

TPS 16900 16890 16855 16468 16490 16220

o tmpfs partition, ~1 GB database (pgbench scale = 133), all defaults.

o No pgbench_tellers and pgbench_branches updates to lower lock 
contention.

o pgbench -s133 -c40 -j1 -n -P15 -T300 -f pgb.sql
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https://github.com/postgrespro/ptrack/blob/d38aa2ad816e8a9360fd09a05eb85d6db67ae289/benchmarks/pgb.sql


Open source

Ptrack and pg_probackup are 
available on GitHub:
o github.com/postgrespro/ptrack

o github.com/postgrespro/pg_probackup
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https://github.com/postgrespro/ptrack
https://github.com/postgrespro/pg_probackup
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Feedback

If you have any questions or comments:
o kondratov.aleksey@gmail.com

o github.com/ololobus

o twitter.com/ololobuss

Thank you!

mailto:kondratov.aleksey@gmail.com
https://github.com/ololobus
https://twitter.com/ololobuss

