
Serverless Postgres:
the journey from 1s startup time to 10s and back again

Alexey Kondratov, Berlin, Febʼ25
PostgreSQL Meetup Group



● GSoCʼ17 Postgres participant

● Postgres contributor in 20182021

● At Neon, worked on provisioning, configuring and 
monitoring Compute Postgres) instances

● github.com/ololobus

● linkedin.com/in/alexeyko

About me
Lead Software Engineer @ neon.tech

https://summerofcode.withgoogle.com/archive/2017/projects/6196688620355584
http://github.com/ololobus
https://www.linkedin.com/in/alexeyko
https://neon.tech


I. Compute is stateless
II. Data persistency is guaranteed by distributed 

storage

What is Neon?
Brief architecture overview



1. Stateless Compute
Compute is running as a stateless virtual 
machine VM) in Kubernetes (k8s). No 
persistent volumes, Stateful Sets and 
complicated k8s operators. No WAL redo at 
start.

2. Distributed storage
Storage scales independently from the 
Compute. Replica Computes are cheap — they 
do not requires new copy of data. Branches are 
cheap — they are copy-on-write.

3. Autoscaling
You set limits — VM resources are scaled 
automatically based on working set size, load 
average and other metrics/signals.

When you do not use your Compute it is 
auto-suspended. Storage and unused branches 
are archived to the block storage after a longer 
period of inactivity. When you need it back, you 
just connect to the same connection string — 
we seamlessly bring it back under the hood.

4. Scale-to-zero

Why Serverless?
Sure, there are still servers somewhere



Latency between the moment client initiated 
connection and Neon Compute is ready to 
accept connections

or roughly time-to-first-query

Compute startup time

● Onboarding experience → ready-to-use 
Postgres in a few seconds instead of minutes.

● Scale-to-zero → get your idle instance back 
quickly.

● Branching and dev environments.

Why does it matter?



EoY 2021
Naive implementation of the ‘Serverlessʼ Compute 
with scale-to-zero in k8s. Zero optimizations, but 
23s startup time. Good enough.

EoY 2022
Dropped the invite gate. The first 
organic flow of new users. Still good.

Cold starts
The beginning



Cold starts
Scaling up

ms

Itʼs getting worse over the course of H1ʼ2023 as we onboard more clients →



Cold starts
K8s is slow. Why?

● Typical breakdown for Service + Deployment creation in k8s was: 1s (to 
get a running container) + 4s (networking) + 500ms Neon-specific 
overhead).

● Default k8s CNI in AWS EKS is Amazon VPC CNI, which is based on 
iptables rules, so it scales poorly with the number of addresses.

● Control plane in a managed k8s cluster is a black box. When itʼs slow you 
have bad time guessing why. And itʼs getting slower with a number of 
running deployments.

● The same seems to apply to Azure AKS.



EoY 2021
Naive implementation of the ‘Serverlessʼ Compute 
with scale-to-zero in k8s. Zero optimizations, but 
23s startup time. Good enough.

EoY 2022
Dropped the invite gate. The first 
organic flow of new users. Still 
good.

Mid-2023
Jumps up to 10s. We implement and 
roll out a pool of pre-provisioned 
computes.

Cold starts
Pre-provisioned computes



Pre-provisioned computes
Configuration



Pre-provisioned computes
Startup latency: before/after

ms



Pre-provisioned computes
Problems

● Seasonality: hourly and daily. Demand for computes fluctuates 
significantly day-to-day, hour-to-hour.

● Steady trend: every 12 months we naturally have more compute 
starts.

● Unexpected trends: some partner may start onboarding new or 
migrating old clients to Neon, so we can get 100, 1.000, or 10.000 
new instances within a relatively short timeframe.

Regular manual tuning and dramatic over-provisioning



Pre-provisioned computes
Problems: seasonality

32%
12%



Early 2024
Fully automated pool size 
management with load 
prediction and hit rate 99%.

Pre-provisioned computes
Pool size prediction

EoY 2021
Naive implementation of the ‘Serverlessʼ 
Compute with scale-to-zero in k8s. Zero 
optimizations, but 23s startup time. 
Good enough.

EoY 2022
Dropped the invite gate. The 
first organic flow of new 
users. Still good.

Mid-2023
Jumps up to 10s. We 
implement and roll out a pool of 
pre-provisioned computes.



Load prediction
Forecasting algorithm

We train the data for every hour and produce the forecasts for the next 
hour. Current model is as following:

● Forecast the next hourʼs start compute count using Unobserved 
Components model with daily and weekly seasonalities. Also 
handles the overall trend.

● Decompose the sub hourly time series into trend, seasonal and 
noise components with Seasonal-Trend decomposition using 
LOESS (STL).

● Get rid of the noise, normalize the sub hourly series per hour, take 
the median of each bucket for the last 3 hours and normalize it 
again.

Credits to Muhammet Yazici
for implementing that
github.com/mtyazici

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.structural.UnobservedComponents.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.structural.UnobservedComponents.html
https://www.statsmodels.org/dev/examples/notebooks/generated/stl_decomposition.html
https://github.com/mtyazici


Load prediction
Pool size: results

Forecasting is very accurate, but we still overshoot pool sizes. Why?



Load prediction
Data pipelining

● Compute VM provisioning can be very slow and take up to 
minutes, but we need computes to be created ahead of time.

● We had to implement pipelining and trend adjuster on top of the 
raw forecasting data:

○ Smoothen forecasting data (to reduce spikes)

○ Adjust by trend (to account for unexpected trend changes)

○ Bump by fraction

○ Bump by constant

○ Limit size (to avoid extreme values if our prediction is off)



Load prediction
Number of pre-provisioned computes: before/after

Three times reduction of the 
number of pre-provisioned 
instances, while still 
maintaining a 99% hit rate.



Whatʼs next?



Caches
Compute is not completely stateless

● Many performance-critical Postgres GUCs cannot be changed without 
restart, e.g., shared_buffers or max_connections.

● We allocate some of them (like max_connections) as per the max 
autoscaling limit; and use swap to deal with steep memory allocations by 
Postgres, until autoscaling kicks in.

● We replace shared buffers scaling with local file cache (LFC), which could 
be scaled at runtime.

● Unfortunately, this means that restarting Postgres in 400ms satisfies HA 
needs, but performance and query latency might be degraded due to 
dropped caches → we need to implement LFC prewarming and 
‘traditionalʼ failover to the ‘warmʼ replica.

https://neon.tech/docs/reference/glossary#local-file-cache


Further optimizing startup times
Both VM starts and acquiring computes from pool

● K8s can be faster

○ Some non-default CNIs scale much better. For example, Cilium, 
which is eBPF-based and presumably doesnʼt have the same 
scalability issues as Amazon VPC CNI.

○ Self-host k8s or deploy a separate k8s control-plane within 
managed cluster.

● We currently download SLRUs (e.g., clog or commit log) as a part of 
basebackup at start. Yet, they might be huge in some cases, so we plan to 
switch to the on-demand SLRU download.

● Consider unifying all Postgres versions under one VM image.

https://cilium.io/


COGS
Cost of goods sold

● We do not fully benefit from precisely forecasting the load

○ Yes, we are much less over-provisioned.

○ But when we suspend random 30% of the fleet overnight, we end 
up with the same number of k8s worker nodes, just sparsely loaded.

● Using live-migrations is likely the answer.

● Another option is to use a dedicated node group for a highly seasonal 
load, so it could be scaled down when the demand is low.



Thank you!
Questions?


